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Analytical solutions for the characteristic scales of a turbulent wake in shallow
flows are presented for two asymptotic cases: in one case, boundary-layer effects
dominate whereas in the other, wake effects prevail. The latter case degenerates
into the solution valid for an unbounded two-dimensional wake. These solutions
show that the momentum deficit decreases exponentially in the longitudinal direction
while the transverse velocity profile reveals a wake region characterized by a reduced
velocity deficit compared to that of an unbounded wake. When wake-turbulence
dominates there is a non-uniform turbulent viscosity in the longitudinal direction.
These analytical solutions are compared with experimental data showing good
agreement.

1. Introduction
Free turbulence has been widely investigated in the last forty years. A number

of analytic solutions describing phenomena such as wakes, jets and mixing layers
are well established and provide a solid foundation for further studies on small-scale
properties of turbulent flows (Bearman 1967; Tennekes & Lumley 1977). The common
feature of free turbulence is the slow longitudinal flow variability as compared to
the variability in the transverse direction. In some cases of environmental relevance,
wakes develop in a confined ambient where the flow can be treated as shallow. Basic
knowledge of shallow wakes is still limited: unlike the case of unbounded wakes,
no analytical solutions for the fundamental variables (e.g. velocity deficit, transverse
dimension of the wake and wake velocity profile) are yet available.

In nature, shallow flows are ubiquitous, and important examples include nearshore
waters, rivers, the lower layer of the atmosphere (see figure 1) and the upper layers
of the oceans. Shallow-wake flows are observed at different scales, for example
downstream of invested structures such as columns of bridges, coastal protection
structures (e.g. piers interrupting longshore currents), and islands immersed in oceanic
currents such as the Gulf Stream. In this case, the slow variability of the flow in the
longitudinal direction is preserved, while the vorticity production is not only generated
by the presence of the wake, but also by bottom friction (Grubisic, Smith & Schar
1995).

In shallow flows, friction plays a role on the stability of the wake similar to viscosity
in the transition from laminar to turbulent flow. Instabilities can be generated,
which sometimes lead to the production of two-dimensional coherent structures (see
Jirka 2001). Schlichting & Gersten (2000) investigated the asymptotic behaviour
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Figure 1. An example of a shallow wake. Aerial picture of the Canary Islands (NASA). The
lower layer of the atmosphere shows typical features of a shallow flow. A von Kármán vortex
street with large coherent structures downstream of the islands can be clearly seen thanks to
the presence of clouds.

of boundary-layer solutions far downstream of their inception. The large-distance
expansion for wakes behind two-dimensional bodies has been given by Tollmien
(1931). Berger (1971) extended similar solutions in the near-inception region. Hinze
(1975) and Tennekes & Lumley (1977) were able to obtain an analytical expression for
the transverse velocity profiles of free turbulent wakes. Furthermore, Schlichting &
Gersten (2000) showed that a class of turbulent unbounded two-dimensional flows,
which satisfy self-preservation, always lead to the same form of the differential
equation for the transverse velocity profile, whose solution is the well-known Gaussian
profile (see also Pope 2000). Tennekes & Lumley (1977) and Schlichting & Gersten
(2000) also compared these results with experimental data and found good agreement.

Similar to other two-dimensional flows, the transverse distribution of the
velocity deficit in shallow wakes induced by various obstacles has been described
using Gaussian distributions (Hinze 1975; Pope 2000), although other functional
dependencies, e.g. trigonometrical or even polynomial, have also been proposed
(Chen & Jirka 1997; Carmer 2005).

Here we summarize the results of an analytical study of the shallow-water equations
aimed at deriving a general expression for the characteristic scales of a shallow wake,
i.e. for the velocity deficit, for the transverse dimension of the wake and, finally,
for the transverse wake velocity profile including the effect of acceleration due to
gravity and bottom friction. Our analytical approach follows closely that of Hinze
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(1975), Tennekes & Lumley (1977) and Schlichting & Gersten (2000). Two asymptotic
cases are distinguished on the basis of the mechanism of turbulence production. An
analytical solution is first derived closing the turbulent shear stress term with an
expression for the turbulent viscosity νT typical of free turbulence. In the second case,
the turbulent viscosity is modelled assuming that the dominant turbulence production
mechanism is the no-slip condition at the bottom.

Following closely the route of Tennekes & Lumley (1977) for unbounded wakes,
we propose an analytical solution for shallow wakes which can also be used as a
suitable basis for stability analysis, like those proposed by Heurre & Monkewitz
(1990); Williamson (1996); Socolofsky & Jirka (2004).

Some direct examples where the above solution is useful are related to mixing
processes induced by obstacles in shallow flows. For instance, simplified solutions for
the transport of pollutants downstream of bridges in rivers or piers in coastal waters
and for oceanic nutrients (e.g. plankton, micro-algae, etc.) in the lee of islands can be
obtained on the basis of the mean flow structure provided by the present solutions.

In § 2, the problem is formulated, the characteristic length scales which govern
the system are presented and a dimensional analysis for the governing equations is
performed to simplify the model. The analytical results obtained under the assumption
of a constant friction coefficient and the comparison with experimental data (Carmer
2005) are discussed in § 3.3 when free turbulence is dominant (case I), and in § 3.4
when wall turbulence dominates (case II). In § 3.5, a brief comparison of the results
for shallow wakes with the results for unbounded wake flows is made. Section 4
summarizes the results and includes some concluding remarks.

2. Formulation of the problem
2.1. The flow scales

In a turbulent unbounded wake, two distinct length scales can be identified. The first
one, l(x), is the transverse width of the wake from the centreline, which is typically
defined as the distance from the centreline, where the velocity deficit becomes a
percentage (e.g. 60 %) of the maximal value of the velocity deficit. The second one, L,
is the longitudinal scale, which represents the downstream distance over which flow
properties, such as the velocity deficit, undergo a sensible variation (see figure 2). A
more detailed definition of such a length scale is given in § 3.1.

The study of free turbulence is, generally, based on an order-of-magnitude
analysis of the terms appearing in the equations of motion and in the continuity
equation. In the case of turbulent wakes, as confirmed by experimental observations
(Tennekes & Lumley 1977), the equation of motion in the longitudinal direction
reduces to a balance between longitudinal convection and the transverse flux of the
turbulent shear stress.

If the flow under investigation is shallow, another characteristic length scale can be
defined, i.e. the water depth h0. In this case, the above length scales range as follows:

h0 � l � L.

Further scales are also required to characterize velocity and turbulent quantities.
In turbulent wakes an obvious scale is provided by the ambient velocity u∞, which
is used for the mean flow in the streamwise direction. Another scale is introduced
for the cross-stream variation of the same velocity component, namely the ‘velocity
deficit’ us( � u∞).
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Figure 2. Sketch of a wake downstream of an obstacle with the notation in use. l(x) is the
transverse width of the wake from the centreline, L is the longitudinal characteristic scale, u
is the instantaneous velocity, u∞ is the ambient velocity in the longitudinal direction and us is
the velocity deficit with respect to the ambient value.

The order of magnitude of the instantaneous streamwise velocity u(x, y) = u∞ − us

is O(u) = u∞, while those of the velocity gradients are ∂u/∂y = O(us/ l) and ∂u/∂x =
O(us/L); furthermore, the continuity equation provides the following estimate for the
cross-stream velocity component: v = O(usl/L).

Shallow flows, with small vertical gradients, are typically averaged over the depth
h of scale h0. This is much smaller than the planimetric scale l and this assumption
allows us to evaluate the scale for the vertical component of the velocities:

w0 =
h0

l
u∞,

h0

l
� 1. (2.1)

In addition, a scale for the Reynolds stresses is introduced in the following form

−u′v′ = u′2 = v′2 = O(w2)

where w is assumed to be proportional to the ambient velocity u∞ through a constant
k.

2.2. The model equations

Following a standard procedure used for shallow flows, we pose the problem in terms
of the depth-averaged mass conservation equation and Reynolds equations. Bottom
friction is included, while the viscous term is neglected, since, for large enough
Reynolds numbers, turbulent friction dominates. The above equations read:

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0, (2.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
− giF +

f

8h
u
√

u2+v2+
1

h

[
∂

∂x
(hu′u′)+

∂

∂y
(hu′v′)

]
=0, (2.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
+

f

8h
v
√

u2 + v2 +
1

h

[
∂

∂x
(hu′v′) +

∂

∂y
(hv′v′)

]
= 0. (2.4)
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Here, ū and v̄ are the components of the depth-averaged velocity vector along x

and y respectively, h is the local water depth, g the acceleration due to gravity, f

is the Darcy–Weisbach friction parameter, iF is the longitudinal bed slope and t is
time. Moreover, the overbar indicates quantities averaged over the depth and the
prime denotes the turbulent fluctuations. The momentum equations can be rewritten
in conservative form as follows:

∂(hu)

∂t
+

∂(huu)

∂x
+

∂(huv)

∂y
+

∂

∂x

(
gh2

2

)
+

∂

∂x
(hu′u′)+

∂

∂y
(hu′v′)=ghiF − f

8
u
√

u2+v2,

(2.5)

∂(hv)

∂t
+

∂(huv)

∂x
+

∂(hvv)

∂y
+

∂

∂y

(
gh2

2

)
+

∂

∂x
(hu′v′)+

∂

∂y
(hv′v′)=

f

8
v
√

u2+v2. (2.6)

2.3. The simplified model

The scaling arguments introduced in the previous subsection allow for simplification
of the governing equations (2.2), (2.3) and (2.4). Since h0 � l � L, us � u∞ and v∞ = 0
and assuming steady mean flow, the following estimates can be obtained:

u = u∞ − us ∼ u∞, v = v∞ + vs = vs � u∞ (vs � us) ,

h = h∞ − δh ∼ h∞.

We also assume the friction factor f to be constant, as it is appropriate for a
far-wake flow, where the bottom friction slowly varies in space and a self-similar
behaviour is approached (e.g. Negretti 2003). We note that the above approximation
does not hold in the near field of wakes with low velocities or high strain rate, as has
been shown by the numerical solution of Stansby (2003).

An order of magnitude analysis of terms appearing in the cross-flow equation (2.4)
leads to the following estimates:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
+

f

8h
v
√

u2 + v2 +
1

h

[
∂

∂x
(hu′v′) +

∂

∂y
(hv′v′)

]
= 0 (2.7)

0 u∞
vs

L
vs

vs

l
g

hs

l

f

8h∞
vsu∞

w2

L

w2

l
.

Hence, at the leading order of approximation, (2.7) reduces to the following balance:

g
∂h

∂y
+

1

h

∂

∂y
(hv′v′) = 0 =⇒ ∂

∂y

(
gh2

2

)
+

∂

∂y
(hv′v′) = 0. (2.8)

Formal integration of (2.8) with respect to y and subsequent derivation with respect
to x leads to:

gh
∂h

∂x
+

∂(hv′v′)

∂x
= 0. (2.9)

Substitution into (2.5) gives:

u
∂u

∂x
+ v

∂u

∂y
− giF +

f

8h
u
√

u2v2 +
1

h

[
∂

∂x
(hu′u′−hv′v′) +

∂

∂y
(hu′v′)

]
=0, (2.10)

for which the following scaling holds

u∞us

L

usvs

l
giF

f

8h∞
u2

∞
w2

L

w2

l
. (2.11)
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The above estimates suggest that the second and the fifth terms in (2.11) can be
neglected so that (2.10) reduces to:

∂(huu)

∂x
+

∂

∂y
(hu′v′) − ghiF +

f

8
u
√

u2 + v2 = 0. (2.12)

Far from the wake zone, i.e. for y → ∞, equation (2.12) reads:

−gh∞iF +
f

8
u2

∞ = 0. (2.13)

Hence, subtracting (2.13) from (2.12), we find:

∂(huu)

∂x
+

∂

∂y
(hu′v′) +

f

8

(
u
√

u2 + v2 − u2
∞
)

+ g(h∞ − h)iF = 0. (2.14)

Simple algebraic manipulations and scaling arguments lead to a simplified
expression for the third term appearing in (2.14) which takes the following form:

u
√

u2 + v2 − u2
∞ ∼ =2u (u − u∞) .

Substituting into (2.14) gives:

∂(huu)

∂x
+

∂

∂y
(hu′v′) +

f

4
(u − u∞) u + g(h∞ − h)iF = 0. (2.15)

Using the steady form of the continuity equation (2.2), the first term of (2.15) can
be rewritten as:

u∞
∂(hu)

∂x
− ∂(husu)

∂x
= −u∞

∂(hv)

∂y
− ∂(husu)

∂x
. (2.16)

Furthermore, integration of (2.15) in the transverse direction with use of (2.16)
leads to:

−
∫ ∞

−∞
u∞

∂(hv)

∂y
dy−

∫ ∞

−∞

∂(husu)

∂x
dy−

∫ ∞

−∞

f

4
usu dy+

∫ ∞

−∞

∂

∂y
(hu′v′) dy+g

∫ ∞

−∞
(h∞−h)iF dy =0.

(2.17)

One can readily see that the first and the fourth terms appearing in (2.17) vanish
because the flow deficit vanishes far from the axis of symmetry. The last integral
requires a more detailed analysis. Using the continuity equation and (2.13) we obtain
the following estimate:

g(h∞ − h)iF = giF δh ∼ giF
h∞us

u∞
=

f

8
us(u + us). (2.18)

The second integral in (2.17) can be rewritten as follows:∫ ∞

−∞

∂(husu)

∂x
dy =

∫ ∞

−∞

∂[(h∞ − δh)usu]

∂x
dy ∼

∫ ∞

−∞

∂[(h∞ − h∞us

u
)usu]

∂x
dy

=
∂

∂x

[∫ +∞

−∞
h∞usu dy +

∫ +∞

−∞
h∞

u2
s

u∞
u dy

]
. (2.19)

Using (2.18) and (2.19), equation (2.17) reduces to:

∂

∂x

[∫ +∞

−∞
h∞usu dy +

∫ +∞

−∞
h∞

u2
s

u∞
u dy

]
= −f

8

[∫ +∞

−∞
usu dy −

∫ +∞

−∞
u2

s dy

]
. (2.20)
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Finally, neglecting the small contribution associated with terms proportional to u2
s ,

equation (2.20) becomes:

∂

∂x

∫ ∞

−∞
h∞usu dy = − f

8h∞

∫ ∞

−∞
h∞usu dy, (2.21)

which is the final approximate form of the streamwise momentum equation that is
used below.

3. Results and discussion
3.1. The momentum deficit

The first novelty introduced by the shallow-water character of the present analysis is
in the expression for the wake momentum deficit M ≡

∫ +∞
−∞ uush∞ dy. In terms of M,

equation (2.21) can be rewritten in the form:

dM
dx

= − f

8h∞
M, (3.1)

whose solution is the exponential function:

M(x) = M0 exp

(
− f

8h∞
x

)
, (3.2)

where M0 is the momentum deficit at the initial section. Equation (3.2) is significantly
different from the analogous relation derived in the context of free turbulence, where
M stays constant in the x-direction. In shallow wakes, the momentum exchange
between the ambient region and the wake zone behind the obstacle is still based
on the generation of two-dimensional coherent structures; furthermore, the bottom
friction dissipates the turbulent kinetic energy of the wake turbulence though its effect
is weaker than in the ambient flow owing to the smaller value of the velocity. As a
result, the x-momentum deficit decreases exponentially. Using the rigid-lid assumption,
Carmer (2005) derived an integral far-wake model with a momentum deficit equation
similar to (3.2) that overestimates the frictional effect by a factor 2. Indeed, equa-
tion (2.18) shows that gravity plays an important role, halving the effect of bottom
friction.

Equation (3.2) can be reinterpreted in terms of the stability number S

S =
f

4

D

h∞

which has been used to describe the stability of a shallow flow around an obstacle,
like a circular cylinder of diameter D (Chen & Jirka 1995). S represents the ratio
between the loss of turbulent kinetic energy due to bed friction and the production
of coherent kinetic energy due to lateral shear. Chen & Jirka (1995) have shown
experimentally that three different types of wake pattern in shallow-water flows can
occur depending on the value of the stability number. For S < 0.2, a vortex street-like
wake develops, which is the most unstable wake. For S > 0.5, a wake with an attached
steady bubble develops. The transition case, 0.2 < S < 0.5, is represented by a wake
with an attached unsteady bubble behind the obstacle (see figure 3).

We than obtain

M(x) = M0 exp

(
− S

2D
x

)
. (3.3)

It appears that the more stable the wake (that is, the larger S is) the faster is the
decrease of the momentum deficit in the longitudinal direction. This means that in
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(c)(b)(a)

Figure 3. Top view (instantaneous photographs) of different wake patterns in shallow flows
visualized by dye injected at the upstream cylinder shoulders. Vortex street-like wake (left),
unsteady bubble (middle), steady bubble (right). Adapted from Carmer (2005).

a vortex street-like wake, the region affected by a deficit of the velocity can extend
further downstream with respect to the case of a wake with a stable bubble.

Equation (3.2) also suggests a suitable definition for the longitudinal length scale
L:

L ≡ 8h∞

f
. (3.4)

Hence, using the dimensionless variables xL ≡ x/L and M = M/M0, equation (3.2)
reduces to the simple dimensionless form:

M(xL) = exp(−xL). (3.5)

3.2. Dimensional analysis

A suitable definition of the velocity profile in the cross-stream direction for a shallow-
wake flow has been empirically obtained by many authors (see for example Chen &
Jirka 1997). Here the attempt is pursued to derive simplified analytical relations for
the above velocity profile, for the transverse length scale l and for the velocity deficit
us , based on the analysis of the order of magnitude of the terms appearing in (2.15),
which is now rewritten in the form:

u
∂u

∂x︸︷︷︸
I

+
∂(u′v′)

∂y︸ ︷︷ ︸
II

+
f

4h
(u − u∞)

√
u2 + v2︸ ︷︷ ︸

III

+ g
δh

h
iF︸ ︷︷ ︸

IV

= 0. (3.6)

Recalling that the assumption us � u∞ is valid within a region sufficiently far from
the obstacle, the following scaling holds:

I: u
∂u

∂x
∼ u∞

us

L
=

h0

h∞
×

(
usu∞f

8h0

)
, (3.7)

II:
∂u′v′

∂y
∼ w2

l
= k2 h0

h∞

L

l

u∞

us

×
(

usu∞f

8h0

)
, (3.8)

III:
f

4h
(u − u∞)

√
u2 + v2 ∼ f

4h0

usu∞ = 2 ×
(

usu∞f

8h0

)
, (3.9)

IV: g
δh

h
iF ∼ g

us

u∞
iF = 1 ×

(
usu∞f

8h0

)
. (3.10)

From this, it follows that terms I, III and IV have the same order of magnitude,
while no statement can be made on the size of II. A self-similar solution of equation
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Near-wake region

Nearer far-wake region Far far-wake region

xTransition:
x = L

Case I: dominance of
            free turbulence

Case II: dominance of
             wall turbulence

Figure 4. Definition of case I (dominance of wake turbulence) and case II (dominance of
wall turbulence). The cross-section x ∼ L represents the transition from case I to case II.

(3.6) is sought in the form:

us = u∞ − u(x, y) = ûsϕ(ζ ) (3.11)

where the overline is omitted for simplicity, ζ = y/l is the transverse coordinate
normalized with the local wake width l, and ϕ(ζ ) represents the function which
describes the transverse velocity deficit profile. Terms I, III and IV of (3.6) can be
given the following form, respectively:

u
∂u

∂x
= −u

[
dûs

dx
ϕ − ûs

l
ζ

dl

dx

dϕ

dζ

]
, (3.12)

f

4h
(u − u∞)

√
u2 + v2 ∼ − f

4h
usu = − f

4h∞(1 − us/u∞)
usu ∼ − f

4h∞
u∞us, (3.13)

g
δh

h
iF =

f

8h∞
u∞us. (3.14)

Substituting (3.12), (3.13) and (3.14) into (3.6) gives:

−u

[
dûs

dx
ϕ − ûs

l
ζ

dl

dx

dϕ

dζ

]
+

∂(u′v′)

∂y
=

f

8h∞
ûsu∞ϕ. (3.15)

The solution of (3.15) requires the introduction of a suitable closure relationship
for the turbulent term ∂u′v′/∂y, which is given here through a simple diffusive model,
such that −u′v′ = νt (∂u/∂y).

As pointed out in § 1, in shallow wakes two distinct mechanisms can be responsible
for turbulence production. Hence, in the following, two asymptotic cases are treated.
In case I, it is assumed that turbulence is essentially caused by the development of
the wake (this occurs in the nearer far wake). In case II, bottom friction dominates
turbulence production, which is a configuration occurring in the extreme far-wake
region. The distinction between the two cases can be set in terms of the dimensionless
variable xL, such that the former occurs in the asymptotic limit xL � 1, while the
latter corresponds to xL 	 1. As a consequence, a shallow wake transits from case I
to case II as it develops downstream (see figure 4), since the wake exponentially
decreases while the effect of bottom friction remains nearly constant.
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Figure 5. Transverse dimension of the wake normalized with the cylinder diameter (cf.
equation (3.31)). Analytical solution (dashed line, S = 0.02; continuous line, S = 0.06) in the
case of free turbulence dominance (case I) is compared with the experimental data of Carmer
(2005): S = 0.02 (circles); S = 0.06 (crosses).

3.3. Self-similarity and mean velocity profile: dominance of free turbulence (case I)

In this case, it is assumed that turbulence production by bottom friction is negligible
compared to the turbulence generated by the wake. This is expected to happen in the
nearer far-wake region i.e. for xL � 1 (see figures 4 and 5). The turbulent viscosity νt

is then evaluated using the typical closure law for free turbulence:

νt = κûsl (3.16)

where κ is a proportionality constant. Hence, the momentum flux due to transverse
velocity fluctuations can be rewritten as:

−∂(u′v′)

∂y
= −1

l

∂

∂ζ

[
νt

l

∂us

∂ζ

]
= −1

l
κû2

sϕ
′′. (3.17)

Using this expression and approximating the velocity in the wake u with the ambient
velocity u∞, equation (3.15) becomes:

−
[
u∞l

û2
s

dûs

dx
+ f l

u∞

ûs

]
ϕ +

[
u∞

ûs

dl

dx

]
ζ

dϕ

dζ
= −κ

d2ϕ

dζ 2
. (3.18)

Self-similarity requires that the normalized profiles of the velocity deficit and of
the Reynolds stress must be the same for all x, which implies that the coefficients in
square brackets must be constant:

u∞l

û2
s

dûs

dx
+

u∞f l

8h∞

1

ûs

= n, (3.19)

u∞

ûs

dl

dx
= m. (3.20)

To proceed with an analytical treatment of the problem, a further relationship
between the two constants n and m is obtained on the basis of dimensional arguments.
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Dividing (3.19) by (3.20) it follows that:

u∞lûs

û2
sL

u∞l
ûsL

+

u∞f l

ûs8h∞
u∞l

ûsL

=
n

m
. (3.21)

Both terms on the left-hand side of (3.21) have size O(1), hence the two constants
appearing at the right-hand side are of the same order of magnitude. Therefore,
with no loss of generality, we can be set |n| = |m|. Furthermore, the first term on
the left-hand side of (3.19) contains the derivative of us with respect to x, which is
expected to be negative because the deficit decreases with increasing distance from the
obstacle. On the contrary, the left-hand side of (3.20) is positive, since the transverse
dimension of the wake l increases with increasing distance from the obstacle. This
implies that n and m must have opposite signs and the following relationship can be
introduced:

m

n
= −1. (3.22)

Suitability of the above assumption is verified a posteriori through comparison of
the analytical solution with experimental data.

From (3.20) it follows that

dl

dx
=

m

u∞
ûs ⇒ d2l

dx2
=

m

u∞

dûs

dx
. (3.23)

Substituting (3.23) into (3.19), an ordinary differential equation for the function l(x)
is obtained, which reads:

d2l

dx2
l +

f

8h∞

dl

dx
l +

(
dl

dx

)2

= 0. (3.24)

Note that the structure of the differential governing equation has been highly
simplified in view of the assumption (3.22). From a mathematical point of view,
this means that the above assumption leads to a restriction of the family group of
solutions for the governing equation. From a physical point of view, dimensional
analysis suggests that only these solutions are of interest.

The solution of (3.24) is:

l(x) =

√
16Ah∞

f
[1 − exp(−xL] − B), (3.25)

from which the solution for the velocity deficit is readily obtained in the form

ûs(x) = u∞
A

m

exp(−xL)√
16Ah∞/f [1 − exp(−xL)] − B

. (3.26)

Use of the variable ζ , defined in terms of the conventional length l, does not allow
us to set the boundary conditions directly, so the integration constants A and B must
be determined through a different approach. To this purpose we observe that in the
case of a smooth bottom (f → 0), the structure of (3.25) should tend to the solution
obtained by Tennekes & Lumley (1977) in the case of free turbulence, i.e. to:

l = F

√
D

2

√
x, (3.27)
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Figure 6. Velocity deficit along the centreline ûsI normalized with the ambient velocity u∞.
Analytical solution in the case of dominance of free turbulence (case I) for S = 0.02 (continuous
line). Symbols denote experimental data (Carmer 2005) of a vortex street-like wake in a shallow
flow with S = 0.02 (Carmer 2005).

where F = 0.25 is a constant determined by Tennekes & Lumley through a comparison
with available experimental data (cf. Tennekes & Lumley 1977, p. 116). Hence, A and
B can be estimated by imposing that (3.25) reduces to the above solution in the limit
of negligible bottom friction. However, solution (3.25) presents a singularity in the
limit of vanishing bottom friction; hence, a Taylor expansion of equation (3.25) is
introduced:

l(x) =
√

−B + 2Ax − 1

16

Ax2

√
−B + 2Ax

f + O(f 2), (3.28)

which, for f → 0, reduces to

lim
f →0

l(x) =
√

−B + 2Ax. (3.29)

We note that (3.29) reproduces (3.27) provided that B = 0.
Furthermore, using the stability number S, (3.25) and (3.26) can be given the

following form

l̃I (xL) =

√
4A [1 − exp(−xL)]

SD
, ˜̂usI (xL) =

exp(−xL)A

Dml̃I
, (3.30)

where l̃I is the transverse wake width normalized with the cylinder diameter D and
˜̂usI is the velocity deficit, normalized with the ambient velocity u∞.

According to the standard fitting procedure used for self-similar solutions (see
Tennekes & Lumley 1977) the constant A is determined through the comparison
of solution (3.30) with the experimental data of Carmer (2005). Such comparison,
reported in figure 5, reveals that the best match is obtained if we set A = D/32.

The resulting solution then reads:

l̃I (xL) =

√
[1 − exp(−xL)]

8S
, ˜̂usI (xL) =

exp(−xL)

32ml̃I
. (3.31)

The analytical solution for us (continuous line) compares satisfactorily with experi-
mental data for a vortex street-like wake (S = 0.02) as shown in figure 6.
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Once the above solutions have been obtained, the transverse velocity profile can be
derived from (3.18) which is now rewritten in the following form:

d2ϕ

dζ 2
+

m

κ
ζ

dϕ

dζ
+

m

κ
ϕ = 0. (3.32)

Equation (3.18) has the non-trivial solution:

ϕ(ζ ) = exp

(
−1

2
µζ 2

)
, (3.33)

where

µ =
m

κ
. (3.34)

The constant µ can be set arbitrarily since its value defines the transverse length l,
which has been left unspecified. If we set µ = 1, we obtain

ϕ(ζ = 1) = e−1/2 ∼= 0.61,

which implies that l is defined as the distance from the centreline for which the
velocity deficit is 61 % of the deficit along the centreline.

The constant m can be estimated recalling the definition of momentum deficit:

M =

∫ +∞

−∞
uush∞ dy �

∫ +∞

−∞
u∞ush∞ dy, (3.35)

where the contribution associated with the longitudinal turbulent flux and the term
proportional to u2

s have been neglected. Using (3.2), (3.25), (3.26) and (3.33), we
obtain:

m =

(√
2πκu2

∞Dh∞

32M0

)2/3

. (3.36)

The constant κ has been determined by fitting experimental data for the transverse
velocity profiles with the exponential function (3.33). Results of the above procedure
are reported in figure 7 for a vortex street-like wake (S = 0.02). Note that sufficiently
far from the obstacle, i.e. in the region of validity of this analytical formulation, κ

seems to assume a constant value roughly equal to 2.
The resulting velocity profile in the transverse direction (3.33) is in good agreement

with experimental data for shallow wakes behind cylindrical obstacles (see figure 8).
No major discrepancies at the wake outer edge, typically characterizing planar
turbulent wakes immersed in an irrotational flow, can be observed for the shallow
wake at hand. The outer flow is not irrotational, but turbulent because of bottom
friction effects. However, this cannot be so easily explained and thus it remains an
open issue.

Equation (3.34) suggests that νt must decrease with x, because so does the product
usl. This is shown in figure 9: sufficiently away from the obstacle, the turbulent
viscosity decreases until it vanishes as the effect of the turbulent wake becomes
negligible. Furthermore, the Reynolds number built with us and l does not remain
constant: it exponentially decreases with the product usl. This means that the wake
in the case of free turbulence decreases in the x-direction and the flow asymptotically
reaches the conditions of the turbulent ambient region, unlike the case of a plane
unbounded wake where the Reynolds number remains constant (cf. Tennekes &
Lumley 1977).
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Figure 7. The constant κ for a vortex street-like wake (S = 0.02) behind a circular cylinder
in shallow flows.
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Figure 8. Comparison between the analytical solution for the transverse velocity profile ϕ(ζ )
obtained for the case of dominance of free turbulence and experimental data (Carmer 2005)
of a vortex street-like wake in shallow flow (S = 0.02).

3.4. Self-similarity and mean velocity profile: dominance of wall turbulence (case II)

For large values of bottom roughness, turbulence production in shallow wakes is
essentially caused by the bottom friction, while vorticity induced by the wake flow
becomes negligible. This happens in the extreme far-wake region, i.e. for xL 	 1
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Figure 9. The turbulent viscosity νt for two vortex street-like wakes behind a circular cylinder
in shallow flows. (a) S = 0.02; (b) S = 0.06. The values are obtained from experimental data
(Carmer (2005)) and are calculated as the ratio between the measured Reynolds stresses and
the velocity gradient between two longitudinal sections. Experimental data are interpolated
through exponential functions (dots).

(cf. figure 4). In this case, the velocity and length scales of the kinematic turbulent
viscosity can be defined as in the classical wall-law, such that νt takes the following
form:

νt = αu∞h∞. (3.37)

Furthermore, the momentum flux due to turbulent fluctuations can be given in the
form

−∂(u′v′)

∂y
= −1

l

∂

∂ζ

[
νt

l

∂us

∂ζ

]
= − 1

l2
αu∞h∞ûs

d2ϕ

dζ 2
. (3.38)

Substituting into (3.11), it follows that

−
[

l2

ûsh∞

dûs

dx
+

f l2

8h2
∞

]
ϕ +

[
l

h∞

dl

dx

]
ζ

dϕ

dζ
= −α

d2ϕ

dζ 2
. (3.39)

Self-similarity requires that the terms in the square brackets be constant, i.e. that:

l2

ûsh∞

dûs

dx
+

f

8h2
∞

l2 = t, (3.40)

l

h∞

dl

dx
= r. (3.41)

The latter condition leads to the following expression for l(x):

lII (x) =
√

2rh∞x + 2A′. (3.42)

Substituting (3.42) into (3.40), an ordinary differential equation for ûs is obtained:

(2rh∞x + 2A′)

ûs

dûs

dx
+

f

8h∞
(2rh∞x + 2A′) = th∞, (3.43)

whose solution is

ûsII (x) = B ′exp

(
− f

8h∞
x

)
(rh∞x + A′)t/2r , (3.44)
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where A′ and B ′ are integration constants which have to be determined through
comparison with experimental data.

The same arguments used for case I suggest that the solution for ϕ can be obtained
only if we set t/r = −1; it follows that (3.39) can then be rewritten as:

d2ϕ

dζ 2
+

r

α
ζ

dϕ

dζ
+

r

α
ϕ = 0, (3.45)

whose non-trivial solution is

ϕ(ζ ) = exp

(
−1

2
µζ 2

)
, (3.46)

where

µ =
r

α
. (3.47)

Note that (3.46) coincides with (3.33); hence, as in § 3.3, the value of µ can be
arbitrarily chosen. Furthermore, the constant α should be determined experimentally;
though no experimental data are presently available.

As for the case of dominant free turbulence, νt is constant along the longitudinal
direction, because the product u∞h∞ is. Furthermore, the Reynolds number set in
terms of us and l decreases in the longitudinal direction.

3.5. Comparison with unbounded wakes and discussion

In the present work, an analytical solution for shallow-wake flows has been derived
including the effects of bottom friction and acceleration due to gravity. Its structure
depends on the relevant characteristic scales of the problem; however, the momentum
deficit has invariably been found to decay in the longitudinal direction owing to
bottom friction.

Two limiting cases have been considered which correspond to a different choice
of the closure relationship for turbulent shear stress: the former limit is approached
when wake turbulence dominates over the wall turbulence, which is the case in
the nearer far-wake region, whereas in the latter, the phenomena is dominated by
boundary-layer effects and happens in the extreme far-wake region. In the former
case, the analytical solution degenerates, in the frictionless asymptotic limit, into the
solution obtained by Tennekes & Lumley (1977) which is valid for unbounded wakes
with a perfectly smooth bottom.

The present results suggest that the flow structure of shallow wakes behind
cylindrical obstacles displays several distinctive features with respect to that
characterizing unbounded wake flows. The above differences are highlighted in the
comparison reported in table 1.

A first noticeable difference is the behaviour of the momentum deficit M =∫ +∞
−∞ uusl dy (cf. § 3.1), which follows an exponentially decreasing trend in the

longitudinal direction, while it remains constant in an unbounded wake. It could be
argued that such behavior should imply a production of total momentum. However,
the reduction of the momentum deficit in shallow wakes does not lead to a momentum
growth, but is dissipated by bottom friction. On the other hand, the dissipative effect
of the bottom friction is reduced by the counteracting effect of the gravitational term
(cf. (2.18)); dimensional analysis suggests that the above effects have the same order
of magnitude.

Furthermore, the transverse displacement of shallow wakes is smaller than that
of an unbounded wake (cf. equation (3.30)). In fact, bottom friction inhibits the



On shallow-water wakes 473

Description Shallow wake: case II Shallow wake: case I Unbounded wake

Validity xL � 1 xL � 1 f = 0
Momentum deficit Decreasing Decreasing Constant
Transverse wake length ∼x1/2 ∼(1 − e−x)1/2 ∼x1/2

Velocity deficit ∼ e−x

x1/2
∼ e−x

(1 − e−x)1/2
∼x−1/2

Velocity profile Gaussian Gaussian Gaussian
Closure turbulent term νT = αu∞h∞ νT = κûs l νT = −ûs lF(ζ )
Turbulent viscosity Constant Decreasing with x Constant

ReT =
ûs l

νT

Constant Constant Constant

Re =
ûs l

ν
Decreasing with x Decreasing with x Constant

Table 1. Comparison between the present analytical solutions for a shallow wake and that
corresponding to an unbounded wake.

development of two-dimensional structures, which are mainly responsible for the
spreading of the wake, since it subtracts turbulent energy from the large scales. In
other words, the exchange of momentum deficit between the ambient region and the
wake zone, owing to turbulent fluctuations associated with two-dimensional coherent
structures, is hampered by bottom friction. Moreover, the decrease of the velocity
deficit in a shallow wake is faster than that of an unbounded wake (cf. equation (3.30)),
which implies that in shallow wakes, the region characterized by velocity deficit does
not persist over large distances far from the body. This finding also indicates that
bottom friction tends to stabilize the flow, improving the energy transfer from the
large to the small scales. In this respect, friction plays a role in the stability of
shallow flows similar to that played by viscosity in the transition between laminar
and turbulent states in an unbounded flow.

The present analysis also shows that shallow wakes belong to that class of flows
for which a self-similarity assumption can be stipulated, both in the case of dominant
free turbulence and in the case of dominant friction. Solutions (3.33) and (3.46) differ
in that the above limiting conditions are characterized by different length and velocity
scales.

Equation (3.34) also states that, for a shallow wake, the turbulent viscosity in
the case of dominant free turbulence is decreasing in the longitudinal direction,
as the product ûs l, while it remains constant both for the case of dominant wall
turbulence and for an unbounded wake. As a consequence, in the case of dominant
free turbulence, the Reynolds number defined in terms of the velocity deficit, the
transverse length scale of the wake and the kinematic viscosity also decreases in
the longitudinal direction. On the contrary, the turbulent Reynolds number set in
terms of the turbulent kinematic viscosity is constant for both shallow wakes and for
unbounded wakes.

4. Summary
An analytical study of shallow-wake flows is proposed, and general solutions for

the characteristic scales governing this problem are obtained, including the effect
of bottom friction and of the acceleration due to gravity. The solution is obtained
by solving, through a simplified procedure, the St Venant equations of motion. An
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expression for the momentum deficit is derived and the solution shows a decay in the
longitudinal direction owing to friction. Two limiting cases have been distinguished
which correspond to different choices of turbulence closure. The first case, for which
the wake turbulence dominates boundary-layer effects, is valid in the nearer far-
wake region while the second limit is approached further downstream where the
phenomenon is dominated by boundary-layer effects. Matching between the solutions
valid in the asymptotic limits considered in our paper is obviously not possible, since
in the former case (dominance of wake turbulence) the effect of the bottom friction
related to the velocity deficit is discarded.

The presented solutions show that the velocity deficit decreases faster and the
transverse dimension of the wake increases more slowly when compared to that of
unbounded wakes. Furthermore, the momentum deficit exponentially decreases in the
longitudinal direction owing to the roughness of the bed. The exchange of momentum
deficit between the ambient region and the wake zone, owing to turbulent fluctuations
of the two-dimensional coherent structures, is hampered by the bottom friction, which
dissipates the turbulent kinetic energy of these structures. The dimensional analysis
of the equations of motion shows the importance of the gravitational term, which has
the same order of magnitude as the friction term.

A comparison with experimental data is also performed and a good match is
found. For the case of wall turbulence dominance, a comparison with experimental
data is not possible since such data are not available. In table 1, all the results are
summarized.

Finally, it is worth noting that the analytical solution derived herein for the
transverse structure of the velocity profile can be used as a suitable starting point to
characterize further hydrodynamic properties of the wake flow, as well as to perform
stability analysis of the wake flow such as those performed by Chen & Jirka (1997)
or Socolofsky & Jirka (2004).

The authors would like to thank Carl F. von Carmer for making available
experimental data and Kevin Tetz for proof-reading. Further acknowledgements
go to the German Science Foundation (DFG Ji 18/4) for its support in conducting
this research.
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